

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: Linux Programming (20MC9122) Regulation: R20 Course & Branch: MCA Year & Sem: II-MCA & I-Sem

UNIT –I

LINUX UTILITIES & WORKING WITH BASH

1	a)	Briefly explain Linux with its Architecture and Features.	[L2][CO1]	[6M]
	b)	Differentiate Linux and Unix with various categories.	[L4][CO1]	[6M]
2	a)	Identify various Linux file handling utilities with example.	[L3][CO3]	[6M]
	b)	List some Linux commands on directory utilities with examples.	[L1][CO3]	[6M]
3	a)	Explain Text processing utilities with suitable examples	[L2][CO2]	[6M]
	b)	What are the various process and disk utilities?	[L1][CO1]	[6M]
4	a)	Explain various file permissions in Linux.	[L2][CO3]	[6M]
	b)	List and explain various networking commands.	[L1][CO1]	[6M]
5	a)	Discuss in detail about AWK with its execution.	[L2][CO3]	[6M]
	b)	Demonstrate a shell script to delete duplicate files in the directory.	[L2][CO1]	[6M]
6	a)	Explain in detail about sed with examples.	[L2][CO1]	[6M]
	b)	Write short notes on here documents.	[L1][CO2]	[6M]
7	Des	sign a bash script to read file line by line.	[L6][CO3]	[12M]
8	Ch	pose various control structures of shell in linux with example.	[L5][CO2]	[12M]
9	a)	Define shell. Describe the responsibilities of a shell.	[L1][CO4]	[6M]
	b)	Design a shell script to find the factorial of a given number.	[L6][CO4]	[6M]
10	a)	Write a short note on input and output redirections.	[L1][CO1]	[6M]
	b)	Design a shell script to reverse given number and string.	[L6][CO4]	[6M]

UNIT –II LINUX FILES

1	a)	Sketch the structure of a file system in linux.	[L3][CO3]	[6M]
	b)	Explain different types of files in linux.	[L2][CO3]	[6M]
2	a)	Define inode and discuss various file types used in linux.	[L2][CO3]	[6M]
	b)	Write short notes on Low level file access	[L1][CO3]	[6M]
3	An	alyze various standard I/O library Functions in linux.	[L4][CO3]	[12M]
4	Compare various file system calls with an example. [L5][C0			[12M]
5	Explain the following [L2][CO3] [i) fseek ii) fgetc iii) getc iv) fputc			[12M]
6	Illu	v) putc strate and compare hard link and soft link in file management.	[L3][CO3]	[12M]
7	Exp	plain the following system calls i) fcntl ii) read iii) write iv) lseek	[L2][CO3]	[12M]
8		scribe the following in detail i) Record locking ii) System calls iii) File descriptors.	[L2][CO3]	
9	Giv	e examples for file and directory management commands in detail.	[L2][CO3]	[12M]
10	Cla	ssify various scanning directories in linux with examples.	[L4][CO3]	[12M]

UNIT –III

LINUX PROCESS & SIGNALS

1	a)	Define Process. Explain the process states in linux with a neat diagram.	[L2][CO5]	[6M]
	b)	List and discuss any three system calls for process management.	[L2][CO5]	[6M]
2	a)	Differentiate fork() and vfork() system calls.	[L2][CO5]	[6M]
	b)	Identify the steps of how kernel supports a process.	[L3][CO5]	[6M]
3	a)	What is Zombie process?	[L1][CO5]	[5M]
	b)	Develop a program for Zombie process.	[L6][CO5]	[7M]
4	a)	Describe the attributes of a process.	[L2][CO5]	[5M]
	b)	Analyze the steps to control the process.	[L4][CO5]	[7M]
5	a)	What is Orphan process?	[L1][CO5]	[5M]
	b)	Develop a program for Orphan process.	[L6][CO5]	[7M]
6	a)	Write short note on wait(), waitpid(), kill()	[L1][CO5]	[6M]
	b)	List various types of signals in linux.	[L1][CO5]	[6M]
7	a)	What is a signal? Discuss the signals SIGKILL and SIGSTOP.	[L2][CO5]	[6M]
	b)	Briefly explain the reliable and unreliable signals.	[L2][CO5]	[6M]
8	Exp	plain the following functions	[L2][CO5]	[12M]
9	a)	i) alarm ii) pause iii) sleep How the linux signals are generated. Explain	[L2][CO5]	[6M]
	b)	How the linux signals can handle. Explain	[L2][CO5]	[6M]
10	Exp	plain in detail about signal functions with examples.	[L2][CO5]	[12M]

UNIT –IV INTERPROCESS COMMUNICATION

1	a)	Define IPC? Explain IPC using FIFOs.	[L2][CO5]	[6M]
	b)	Write short notes on IPC by using Message Queues.	[L1][CO5]	[6M]
2	a)	Discuss IPC between processes on a single system.	[L2][CO5]	[6M]
	b)	What is a pipe? Explain the process of calling a pipe.	[L2][CO5]	[6M]
3	a)	Describe the advantages of FIFO's over pipes.	[L2][CO5]	[6M]
	b)	Develop a C program to illustrate two way communication using FIFOs.	[L6][CO5]	[6M]
4	a)	Discuss IPC between processes on different systems.	[L2][CO5]	[6M]
	b)	Explain shmget, shmctl, msgget and msgctl.	[L2][CO5]	[6M]
5	Ide	ntify and Explain in detail about APIs for shared memory.	[L3][CO5]	[12M]
6	Express in detail about message queues and its APIs.			[12M]
7	Compare how kernel supports for semaphore and shared memory. [L5][CO5]			[12M]
8	a)	Discuss about file locking in semaphores.	[L2][CO5]	[6M]
	b)	Describe how pipes are used as a standard input and output.	[L2][CO5]	[6M]
9	Exp	press in detail about semaphores and its APIs.	[L2][CO5]	[12M]
10	a)	Write about library functions popen() and pclose().	[L1][CO5]	[6M]
	b)	What is the difference between named and unnamed pipes?	[L1][CO5]	[6M]

UNIT –V MULTITHREADED PROGRAMMING and SOCKETS

1	a)	What is a Thread? Differentiate thread with process.	[L2][CO5]	[6M]
	b)	Explain about thread life cycle with neat diagram.	[L2][CO5]	[6M]
2	Det	Determine POSIX thread creation and attributes.		[12M]
3	a)	What is meant by synchronization? How it is achieved with semaphores?	[L2][CO5]	[6M]
	b)	List various multithreading models in details.	[L1][CO5]	[6M]
4	a)	Explain POSIX thread API in detail.	[L2][CO5]	[6M]
	b)	Explain the synchronization of threads by using mutexes.	[L2][CO5]	[6M]
5	a)	What is a socket? Explain various data types used by the sockets interface.	[L2][CO6]	[6M]
	b)	Distinguish between connection oriented and connectionless protocol.	[L4][CO6]	[6M]
6	Wh	at is a socket API? Explain types of various sockets.	[L2][CO6]	[12M]
7	a)	Describe socket system calls for connection oriented.	[L2][CO6]	[6M]
	b)	Describe socket system calls for connectionless protocol.	[L2][CO6]	[6M]
8	Ske	tch a diagram for a typical client/server model.	[L3][CO6]	[12M]
9		ssify various steps for creating client/server communication in connection nted model.	[L4][CO6]	[12M]
10		ign the process of creating client/server communication in connectionless model.	[L6][CO6]	[12M]

Prepared by: Mr. J. S. ANANDA KUMAR, Assistant Professor, Department of MCA, SIETK.